VEGF scaffolds enhance angiogenesis and bone regeneration in irradiated osseous defects.

نویسندگان

  • Darnell Kaigler
  • Zhuo Wang
  • Kim Horger
  • David J Mooney
  • Paul H Krebsbach
چکیده

UNLABELLED Bone regeneration is challenging in sites where the blood supply has been compromised by radiation. We examined the potential of a growth factor (VEGF) delivery system to enhance angiogenesis and bone formation in irradiated calvarial defects. VEGF-releasing polymers significantly increased blood vessel density and vascular perfusion in irradiated defects and increased bone formation relative to control conditions. INTRODUCTION Radiation therapy causes damage to tissues and inhibits its regenerative capacity. Tissue injury from radiation is in large part caused by a compromised vascular supply and reduced perfusion of tissues. The aim of this study was to determine if delivery of vascular endothelial growth factor (VEGF) from a biodegradable PLGA (copolymer of D,L-lactide and glycolide) scaffold could enhance neovascularization and bone regeneration in irradiated osseous defects. MATERIALS AND METHODS An isolated area of the calvarium of Fisher rats was irradiated (12 Gy) 2 weeks preoperatively, and two 3.5-mm osseous defects were created in this area, followed by the placement of PLGA scaffolds or VEGF scaffolds (PLGA scaffolds with incorporated VEGF) into the defects. Laser Doppler perfusion imaging was performed to measure perfusion of these areas at 1, 2, and 6 weeks. Implants were retrieved at 2, 6, and 12 weeks, and histologic and muCT analyses were performed to determine neovascularization and bone regeneration. RESULTS Histological analyses revealed statistically significant increases in blood vessel formation (>2-fold) and function (30%) within the VEGF scaffolds compared with PLGA scaffolds. Additionally, evaluation of bone regeneration through bone histomorphometric and muCT analyses revealed significantly greater bone coverage (26.36 +/- 6.91% versus 7.05 +/- 2.09% [SD]) and increased BMD (130.80 +/- 58.05 versus 71.28 +/- 42.94 mg/cm(3)) in VEGF scaffolds compared with PLGA scaffolds. CONCLUSIONS Our findings show that VEGF scaffolds have the ability to enhance neovascularization and bone regeneration in irradiated osseous defects, outlining a novel approach for engineering tissues in hypovascular environments.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Porous Silk Scaffolds for Delivery of Growth Factors and Stem Cells to Enhance Bone Regeneration

Stem cell-based tissue engineering shows promise for bone regeneration and requires artificial microenvironments to enhance the survival, proliferation and differentiation of the seeded cells. Silk fibroin, as a natural protein polymer, has unique properties for tissue regeneration. The present study aimed to evaluate the influence of porous silk scaffolds on rat bone marrow stem cells (BMSCs) ...

متن کامل

Bone Tissue Engineering: a Mini-Review

Despite advances in bone tissue engineering, auto grafts from intra-oral or extra-oral donor sites are still the gold standard for treatment of large craniomaxillofacial defects. Biomaterial development, application of growth factor, and stem cells, open new gateway to bone regeneration studies, but real translation from bench to bedside have not yet happened. In this review article, a number o...

متن کامل

A Review on Commonly Used Scaffolds in Tissue Engineering for Bone Tissue Regeneration

Introduction: Bone is one of the tissues that have a true potential for regeneration. However, sometimes the bone defects are so outsized that there is no chance of bone self-repair and restoration or the damage is such that it is not possible to repair with medical or surgical interventions. In these situations, bone grafts are the treatment of choice, but due to several obstacles, including l...

متن کامل

VEGF and BMP-2 promote bone regeneration by facilitating bone marrow stem cell homing and differentiation.

Vascular endothelial growth factor (VEGF) and bone morphogenetic protein-2 (BMP-2) have been widely used in the fields of tissue engineering and regenerative medicine to stimulate angiogenesis and bone formation. The goal of this study was to determine whether VEGF and BMP-2 are involved in the homing of bone marrow stem cells (BMSCs) for bone regeneration and to provide insights into their mec...

متن کامل

The effect of platelet-rich plasma on human mesenchymal stem cell-induced bone regeneration of canine alveolar defects with calcium phosphate-based scaffolds

Objective(s): Autologous bone transplantation known as the “gold standard” to reconstruction of osseous defects has known disadvantages. This study was designed to explore the effects of hydroxy-apatite/tricalcium-phosphate (HA/TCP) and platelet-rich plasma (PRP) on the osteogenesis ability of human adipose-derived mesenchymal stem cells (hAdMSCs) in vitro and in vivo. Materials and Methods: hA...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research

دوره 21 5  شماره 

صفحات  -

تاریخ انتشار 2006